7\

/ N\

Strongly Connected Components
2sly LU Ny

|0l Training Camp 2 — 2021/22

Kenna Geleta




EXAMPLE PROBLEM

CSES 1683 : Planets and Kingdoms Time limit: 1.00 s Memory limit: 512 MB

A game has n planets, connected by m teleporters. Two planets a and b belong
to the same kingdom exactly when there is a route both from a to b and from b
to a. Your task 1s to determine for each planet its kingdom.



EXAMPLE PROBLEM

CSES 1683 : Planets and Kingdoms Time limit: 1.00 s Memory limit: 512 MB

A game has n planets, connected by m teleporters. Two planets a and b belong
to the same kingdom exactly when there is a route both from a to b and from b
to a. Your task 1s to determine for each planet its kingdom.



EXAMPLE PROBLEM

CSES 1683 : Planets and Kingdoms Time limit: 1.00 s Memory limit: 512 MB

A game has n planets, connected by m teleporters. Two planets a and b belong to the same
kingdom exactly when there is a route both from a to b and from b to a. Your task is to
determine for each planet its kingdom.




DEFINITION

A graph is strongly connected when a path exists from
every node to every other node.

A strongly connected component is a subset of nodes in
a graph where a path exists from every node to every
other node.

{
The strongly connected components form an acyclic
component graph.



EXAMPLE

Figure: Directed Graph



EXAMPLE

Figure: Directed Graph



EXAMPLE

‘-___——’

Figure: Directed Graph



EXAMPLE

‘-___——’

’—I.N
Pt "-~\ ,’ \\
; \ ; \ 4 Y 4
/! 1 \ /’
|
/ 3 r 4 5 //
I ) \ 1N ’
\\ /’ \\ /, \~~~ ”,
\Nn_ - Y4 TEmm———
- \\-—’

Figure: Directed Graph



4 KOSARAJU'S,
DOUBLE DES'G/

BIT



KOSARAJU'S ALGORITHM o pse)

1. Construct adjacency list

2. Perform DFS

1. Flag entry time

2. Push to children

3. Flag exit time

4. Add node timing object to list

. Order list by descending exit time
Reverse all edges in the graph

. Perform DFS from first list element
1. Push nodes to component lists



EXAM P L E . 1. construct adjacency list

12,3}
11,4}
U
13}
4,7]
15}
12,6}

N O O W N R



EXAM P L E : 2. perform dfs

12,3}
11,4}
U
13}
4,7}
15}
12,6}

1, }

N o o B oW N R



EXAM P L E : 2. perform dfs

12,3}
11,4}
U
13}
4,7}
15}
12,6}

1, } 12, }

N o o B oW N R




EXAM P L E : 2. perform dfs

12,3}
11,4}
U
13}
4,7}
15}
12,6}

N o o B oW N R




EXAM P L E : 2. perform dfs

12,3}
11,4}
U
13}
4,7}
15}
12,6}

N o o B oW N R




EXAM P L E : 2. perform dfs

12,3}
11,4}
U
13}
4,7}
15}
12,6}

N o o B oW N R




EXAM P L E : 2. perform dfs

12,3}
11,4}
U
13}
4,7}
15}
12,6}

N o o B oW N R

3

{4, 5} {3, 6}



EXAM P L E : 2. perform dfs

12,3}
11,4}
U
13}
4,7}
15}
12,6}

11, } 12,7}

N o o B oW N R




EXAM P L E : 2. perform dfs

12,3}
11,4}
U
13}
4,7}
15}
12,6}

{1, 8}

N o o B oW N R




EXAM P L E : 2. perform dfs

12,3}
11,4}
U
13}
4,7}
15}
12,6}

{1, 8} 12,7} 1

1l je— 2

N o o B oW N R




EXAM P L E : 2. perform dfs

12,3}
11,4}
U
13}
4,7}
15}
12,6}

N o o B oW N R




EXAM P L E : 2. perform dfs

{1, 8) 2,77 {9} L 12,3}
2 {1,4}
1 e—m 2 jJe— 7 3 0
- \{10,} p 3)
6 5 {4,7}
,, ‘, 6 (5}
3 b— 4 —CS)/ 7 (2,6)

{4, 5} {3, 6} {11, }



EXAM P L E : 2. perform dfs

{1, 8) 2,77 {9} L 12,3}
2 {1,4}
1 e—m 2 jJe— 7 3 0
- \{10,} p 3)
6 5 {4,7}
,, 6 (5}
3 b— 4 —<5>/ 7 (2,6)



EXAM P L E : 2. perform dfs

12,3}
11,4}
U
13}
4,7}
15}
12,6}

{10, 13}

N o o B oW N R



EXAM P L E : 2. perform dfs

12,3}
11,4}
U
13}
4,7}
15}
12,6}

{1, 8} {2,7} {9, 14}

¥ {10, 13}

6

/

{4, 5} {3, 6} {11, 12}

N o o B oW N R

3 )— 4 )— 5



EXAM P L E : 2. perform dfs

12,3}
11,4}
U
13}
4,7}
15}
12,6}

{1, 8} {2,7} {9, 14}

Z
[EN
o
[HN
W
—
N OO o B oW N R



EXAM P L E: 3. order list by descending time

{1, 8} 2,7} {9, 14} 7 14
3 \{}0, 13} g 12

6 1 3

Y / 2 /

3 b—— 4 — 5 4 6
{4, 5} {3, 6} {11, 12} 3 5



EXAMPLE: 4. REVERSE EDGES

T
7/ 14

6 13

5 12

1 3

2 7/

4 6

3 5



EXAMPLE: 5. 204 DFS

T
7/ 14

6 13

5 12

1 3

2 7/

4 6

3 5



EXAMPLE: 4.2 DFS

T
7/ 14

6 13

5 12

1 3

2 7/

4 6

3 5



EXAMPLE: 4.2 DFS

T
7/ 14

6 13

5 12

1 3

2 7/

4 6

3 5



EXAMPLE: 4.2 DFS

T
7/ 14

6 13

5 12

2 7/

4 6




EXAMPLE: 4. 27 DFS

T
7/ 14
6 13

5 12
e
2
4 6

3 5




EXAMPLE: 4. 27 DFS

7 14
1 2 7 6 13




EXAMPLE: 4. 27 DFS

T
7/ 14

1 2 7 6 13

1 | 5 12

T8
e




EXAMPLE:

T
7 14 DONE!
6 13

These components

5 12
-- are now available
-- for any other query
4 6




TIME AND SPACE COMPLEXITY

Time Complexity = O(h + m)

// due to the implementation of 2 depth-first searches

Space Complexity = O(n + m)

/] accounts for the implementation of an adjacency list with n nodes and m edges



KOSARAJU'S ALGORITHM o pse)

WHY DOES THIS

1. Construct adjacency list
WORK THOUGH?

2. Perform DFS

1. Flag entry time
2. Push to children

3. Flag exit time DETAILED PROOF HERE:
4. Add node timing object to list

. Order list by descending exit time
Reverse all edges in the graph \/

. Perform DFS from first list element
1. Push nodes to component lists

W

Sl


https://cp-algorithms.com/graph/strongly-connected-components.html

EXAMPLE PROBLEM

CSES 1683 : Planets and Kingdoms Time limit: 1.00 s Memory limit: 512 MB

A game has n planets, connected by m teleporters. Two planets a and b belong to the same
kingdom exactly when there is a route both from a to b and from b to a. Your task is to
determine for each planet its kingdom.

ANSWER: FIND THE SCC (Strongly
Connected Component) WHERE
EACH NODE IS FOUND



SCC IMPLEMENTATION

INITIALIZATIONS

vector<pair<int, int>> adj[maxn]; // pair<int a <- target node, int b <- edge type>
vector<int> vect; // store node id in order of finish times

bool vis[maxn] = {@}; // visited array for DFS

int comp[maxn] = {0}; // comp[i] = ID of SCC

int clvl = 1; // current SCC ID

SCC = Strongly Connected Component



SCC IMPLEMENTATION

for (int 1 = 0; i < m; i++)
{
int a, b; cin >> a >> b;
a--; b--; // ZERO INDEXING OR NO INDEXING!

adj[a].push_back(make pair(b, ©)); // edges of type @ are used in the first run
adj[b].push_back(make pair(a, 1)); // edges of type 1 are used in the second run

}

// run the first dfs
for (int i = 0; i < n; i++) if (!vis[i]) dfs(i, 0, -1);

reverse(vect.begin(), vect.end()); // reverse edges to find ordering by descending finish time

// run second dfs based on vect ordering
for (int i = 0; i < vect.size(); i++)
{
if (!vis[vect[i].first])
{
dfs(vect[i].first, 1, clvl); // notice the second parameter!
clvl++;

}
}



SCC IMPLEMENTATION

void dfs(int a, int type, int cid)
{

if (vis[a]) return;

vis[a] = true;
if (type == 1) comp[a] = cid; // set component id only in second run

for (pair<int, int> child : adj[a])

{
if (child.second != type) continue;
dfs(child.first, type, cid);

}

// append processed nodes to list
vect.push back(a);

}



- -

Submission details

Task: Planets and Kingdoms
Sender: YOU IN THE FUTURE
Submission time: SOONER THAN YOU THINK
Language: C++17

Status: READY

Result: ACCEPTED

Test results -

test verdict time

#1 ACCEPTED 0.01s »
#2 ACCEPTED 0.01s »
#3 ACCEPTED 0.01s pod
#4 ACCEPTED 0.01s »
#5 | ACCEPTED 0.01s »
#6 ACCEPTED 0.15s »
#7 ACCEPTED 0.15s »
#8 ACCEPTED 0.14 s »
#9 ACCEPTED 0.14 s »

#10 | ACCEPTED 0.14 s »




APPLICATIONS

1. Flndlng Strongly Connected Components (as shown in the example problem)

2. Condensed Graphs formed with SCC’s are always acyclic. (We can use this fact to..)

* Generate the topological ordering to apply Dynamic Programming techniques that tell us
e how many different paths there are
» what the shortest/longest path is
e what the minimum/maximum number of edges in a path is

e which nodes certainly appear in any path



MORE SCC PROBLEMS

*SPQOJ - True Friends
*SPOJ - Capital City

*Codeforces - Scheme
*SPOJ - Ada and Panels
*CSES - Flight Routes Check
*CSES -Coin Collector

*Codeforces - Checkposts



http://www.spoj.com/problems/TFRIENDS/
http://www.spoj.com/problems/CAPCITY/
http://codeforces.com/contest/22/problem/E
http://www.spoj.com/problems/ADAPANEL/
https://cses.fi/problemset/task/1682
https://cses.fi/problemset/task/1686
https://codeforces.com/problemset/problem/427/C

